量化交易入门(十四)Python开发-matplotlib

liftword3个月前 (02-11)技术文章43

我来用股票量化数据讲解如何使用Matplotlib库进行数据可视化。Matplotlib是Python中最流行的绘图库,提供了丰富的图表类型和自定义选项。

假设我们有以下股票数据DataFrame df:

    Date        Open    High    Low     Close   Volume
0   2023-01-03  100.5   101.3   99.8    100.2   1000000
1   2023-01-04  100.3   100.8   99.5    100.6   1200000
2   2023-01-05  100.7   101.5   100.1   101.2   1500000
3   2023-01-06  101.3   102.0   100.5   100.9   1800000
4   2023-01-09  100.8   101.2   99.9    100.5   1300000
  1. 绘制基本折线图
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Close'])
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.title('Stock Close Price')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()

我们首先创建一个图形对象和一个默认的轴对象。然后用 plot() 函数绘制收盘价折线图。接着设置x轴和y轴的标签,图表标题,x轴刻度的旋转角度,以及显示网格线。最后用 show() 函数显示图表。

  1. 绘制多条折线
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Close'], label='Close')
plt.plot(df['Date'], df['Open'], label='Open')
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Stock Price')
plt.xticks(rotation=45)
plt.legend()
plt.grid(True)
plt.show()

我们可以在同一个轴对象上绘制多条折线。每次调用 plot() 函数时,传入 label 参数以给出图例名称。然后用 legend() 函数显示图例。

  1. 绘制成交量柱状图
plt.figure(figsize=(10, 6))
plt.bar(df['Date'], df['Volume'], width=0.6)
plt.xlabel('Date')
plt.ylabel('Volume')
plt.title('Stock Volume')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()

我们用 bar() 函数绘制柱状图。width 参数设置柱的宽度。

  1. 绘制价格和成交量的子图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True)
ax1.plot(df['Date'], df['Close'])
ax1.set_ylabel('Close Price')
ax1.grid(True)
ax2.bar(df['Date'], df['Volume'], width=0.6)
ax2.set_xlabel('Date')
ax2.set_ylabel('Volume')
ax2.grid(True)
plt.tight_layout()
plt.show()

我们用 subplots() 函数创建一个包含两个子图的图形对象。2, 1 表示子图的行数和列数,即上下两个子图。sharex=True 表示两个子图共享x轴。然后在第一个子图上绘制收盘价折线图,在第二个子图上绘制成交量柱状图。我们可以用 ax1 和 ax2 对象分别设置两个子图的y轴标签和网格线。最后用 tight_layout() 函数自动调整子图间的间距,并显示图表。

  1. 绘制K线图
from mplfinance.original_flavor import candlestick_ohlc
import matplotlib.dates as mdates

fig, ax = plt.subplots(figsize=(10, 6))
candlestick_ohlc(ax, df[['Open', 'High', 'Low', 'Close']].values, width=0.6, colorup='red', colordown='green')
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax.set_xlabel('Date')
ax.set_ylabel('Price')
ax.set_title('Stock Candlestick Chart')
ax.grid(True)
fig.autofmt_xdate()
plt.show()

K线图是股票价格走势的常用表示方式。这里我们使用Matplotlib的一个扩展库mplfinance来绘制K线图。首先将DataFrame中的开盘价、最高价、最低价、收盘价数据传给 candlestick_ohlc() 函数。colorup 和 colordown 参数设置上涨和下跌K线的颜色。然后设置x轴的日期格式,以及轴标签和图表标题。最后用 autofmt_xdate() 函数自动格式化x轴的日期标签,并显示图表。

  1. 保存图表到文件
plt.savefig('stock_chart.png', dpi=300, bbox_inches='tight')

我们可以用 savefig() 函数将图表保存到文件。dpi 参数设置图片的分辨率,bbox_inches='tight' 表示自动裁剪图片边缘的空白部分。

以上就是用Matplotlib进行量化金融数据可视化的一些常用示例。Matplotlib提供了非常丰富和灵活的绘图功能,可以满足大部分的量化分析需求。建议查阅Matplotlib的官方文档和画廊,学习更多的绘图技巧和自定义选项。同时,也可以探索一些基于Matplotlib的高级绘图库,如Seaborn和Plotly,它们提供了更加美观和交互的图表样式。

相关文章

5分钟教会你:如何用python写一个量化交易程序

在量化交易领域,Python凭借其丰富的库和简洁的语法成为众多开发者的首选语言。下面这篇文章将为你详细介绍如何用Python编写一个简单的交易量化程序,适合有一定编程基础且对量化交易感兴趣的读者。用P...

如何用 Python 打造你的专属量化交易软件全解析

在金融科技飞速发展的今天,量化交易越来越受到投资者的青睐。Python作为一门强大且灵活的编程语言,为我们搭建期货量化交易软件提供了有力工具。今天,就让我们深入探讨如何用Python实现这一目标。量化...

「精彩漫画」带你秒懂8种常见的量化选股模型

本漫画转自公众号金财维,作者财维君。(资料来源:金财维,作者财维君,版权归原作者所有)关于Python金融量化专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取量化投资视频资料、量...

【手把手教你】入门量化回测最强神器backtrader(一)

1引言目前基于Python的量化回测框架有很多,开源框架有zipline、vnpy、pyalgotrader和backtrader等,而量化平台有Quantopian(国外)、聚宽、万矿、优矿、米筐、...

如何使用python做量化交易_python量化交易视频教程

介绍首先我不是量化工程师,我只是个后端工程师;其次我对量化也不感兴趣,自己有几把刷子还是了解的,自己不适合做量化交易:自己没有优秀的模型设计能力自己是个长线投资,一般一个股票都是至少拿一年以上,短线的...

用Python编写量化交易策略的完整指南

首先,推荐您学习一些Python金融计算库,例如NumPy、Pandas、Matplotlib和Scikit-Learn等。接下来,您可以学习有关量化投资的知识,例如技术分析、基本面分析、市场心理学和...