Python使用bokeh及folium实现地理位置信息的交互可视化

liftword4周前 (04-05)技术文章13

Talk is cheap,show U the code!

1.普通版(常规地图)

import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
output_notebook()
import pandas as pd
import folium
from folium import plugins

#加载数据
df =  pd.read_csv('平台总镜头.csv',encoding='gb18030')
df0 =  pd.read_csv('离线镜头.csv',encoding='gb18030')
def shixiao(x):
    if x in df0['国标编码'].tolist():
        return 1
    else:
        return 0
df['失效'] = df['国标编码'].apply(shixiao)
df = df.sample(frac=0.1, replace=True, random_state=10)  #1/10数据

df0 = df[df['失效']==1]  # 失效 红色 稍微大一点
df4 = df[df['失效']==1]  # 失效 红色 稍微大一点
df1 = df[(df['失效']==0) & (df['建设类别']=='一类点') ]  # 绿色
df2 = df[(df['失效']==0) & (df['建设类别']=='二类点') ]  # 蓝色
df3 = df[(df['失效']==0) & (df['建设类别']=='三类点') ]  #  青色

plotmap1 = folium.Map(location=[22.734057,114.058937], zoom_start=12,control_scale = True,
                          tiles='http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}',
                            attr='(c) 高德地图'                    
                     )
for i in range(df1.shape[0]):
     folium.Circle([df1['GPS纬度'].tolist()[i],df1['GPS经度'].tolist()[i]],color='green',radius=1).add_to(plotmap1)
for i in range(df2.shape[0]):
     folium.Circle([df2['GPS纬度'].tolist()[i],df2['GPS经度'].tolist()[i]],color='blue',radius=1).add_to(plotmap1)
for i in range(df3.shape[0]):
     folium.Circle([df3['GPS纬度'].tolist()[i],df3['GPS经度'].tolist()[i]],color='orange',radius=1).add_to(plotmap1)
        
for i in range(df0.shape[0]):
    folium.Circle([df0['GPS纬度'].tolist()[i],df0['GPS经度'].tolist()[i]],color='red',radius=1).add_to(plotmap1)
    

plotmap1.save('folium_map_1_10_全部Bokeh.html')

不带控件全部显示分类点

import math
def lonLat2WebMercator(lon,Lat):
    x = lon *20037508.34/180;
    y = math.log(math.tan((90+Lat)*math.pi/360))/(math.pi/180)
    y = y *20037508.34/180;
    return x,y
def lonLat2WebMercator_Lon(lon):  #GPS经度
    x = lon *20037508.34/180
    return x
def lonLat2WebMercator_Lat(Lat):  # GPS纬度
    y = math.log(math.tan((90+Lat)*math.pi/360))/(math.pi/180)
    y = y *20037508.34/180
    return y
df_new = df[(df["GPS纬度"]>22)  & (df["GPS纬度"] <23) dfgps>113)  & (df["GPS经度"] <115)]  # 有效数据

df_new["Lon"] = df_new["GPS经度"].apply(lonLat2WebMercator_Lon)
df_new["Lat"] = df_new["GPS纬度"].apply(lonLat2WebMercator_Lat)

df = df_new.copy()

df0 = df[df['失效']==1]  # 失效 红色 稍微大一点
df1 = df[(df['失效']==0) & (df['建设类别']=='一类点') ]  # 绿色
df2 = df[(df['失效']==0) & (df['建设类别']=='二类点') ]  # 蓝色
df3 = df[(df['失效']==0) & (df['建设类别']=='三类点') ]  #  青色

from bokeh.util.browser import view
from bokeh.document import Document
from bokeh.embed import file_html
from bokeh.resources import INLINE
from bokeh.models import Plot
from bokeh.models import Range1d
from bokeh.models import WheelZoomTool, PanTool, BoxZoomTool
from bokeh.models import WMTSTileSource
# 设置x,y轴的经纬度范围
x_range = Range1d(int(df_new["Lon"].min()),int(df_new["Lon"].max()))
y_range = Range1d(int(df_new["Lat"].min()),int(df_new["Lat"].max()))
tile_options = {}
# https://www.jb51.net/article/206540.htm
tile_options['url'] = 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=7&x={x}&y={y}&z={z}'  # style=7,8
tile_options['attribution'] = """
   '(c) 公众号:注册土木.
    """ # 地图右下角标签
tile_source = WMTSTileSource(**tile_options)
# 实例化plot
p = figure(x_range=x_range, y_range=y_range, plot_height=800, plot_width=1000)
# 标记区域


p.scatter(df1['Lon'], df1['Lat'],size=5, marker="circle", color="#0DE63C", alpha=0.99,legend_label='一类') 
p.scatter(df2['Lon'], df2['Lat'],size=5, marker="circle", color="#9C09EB", alpha=0.99,legend_label='二类') 
p.scatter(df3['Lon'], df3['Lat'],size=5, marker="circle", color="#101AEB", alpha=0.99,legend_label='三类') 

p.scatter(df0['Lon'], df0['Lat'],size=5, marker="circle", color="red", alpha=0.99,legend_label='失效')  
# 渲染地图
# p.add_tools(BoxZoomTool(match_aspect=True))  # WheelZoomTool(), PanTool(), 

tile_renderer_options = {}
p.add_tile(tile_source, **tile_renderer_options)

# 其他参数
p.xaxis.visible = False
p.yaxis.visible = False 
p.xgrid.grid_line_color = None 
p.ygrid.grid_line_color = None 
p.legend.orientation = "horizontal"
p.legend.location = "top_center"
p.legend.click_policy="hide" # 点击图例显示、隐藏图形
p.sizing_mode = 'scale_width'
# 显示
show(p)


全部数据

部分数据

3.加强版(卫星地图)

from bokeh.util.browser import view
from bokeh.document import Document
from bokeh.embed import file_html
from bokeh.resources import INLINE
from bokeh.models import Plot
from bokeh.models import Range1d
from bokeh.models import WheelZoomTool, PanTool, BoxZoomTool
from bokeh.models import WMTSTileSource
# 设置x,y轴的经纬度范围
x_range = Range1d(int(df_new["Lon"].min()),int(df_new["Lon"].max()))
y_range = Range1d(int(df_new["Lat"].min()),int(df_new["Lat"].max()))
tile_options = {}
# https://www.jb51.net/article/206540.htm
# tile_options['url'] = 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=7&x={x}&y={y}&z={z}'  # style=7,8
tile_options['url'] = 'http://webst02.is.autonavi.com/appmaptile?style=6&x={x}&y={y}&z={z}'
# tiles='http://webst02.is.autonavi.com/appmaptile?style=6&x={x}&y={y}&z={z}', # 高德卫星图
tile_options['attribution'] = """
   '(c) 公众号:注册土木.
    """ # 地图右下角标签
tile_source = WMTSTileSource(**tile_options)
# 实例化plot
p = figure(x_range=x_range, y_range=y_range, plot_height=800, plot_width=1000)
# 标记区域


p.scatter(df1['Lon'], df1['Lat'],size=5, marker="circle", color="#0DE63C", alpha=0.99,legend_label='一类') 
p.scatter(df2['Lon'], df2['Lat'],size=5, marker="circle", color="#9C09EB", alpha=0.99,legend_label='二类') 
p.scatter(df3['Lon'], df3['Lat'],size=5, marker="circle", color="#101AEB", alpha=0.99,legend_label='三类') 

p.scatter(df0['Lon'], df0['Lat'],size=5, marker="circle", color="red", alpha=0.99,legend_label='失效')  
# 渲染地图
p.add_tools(WheelZoomTool(), PanTool(), BoxZoomTool(match_aspect=True))  # 

tile_renderer_options = {}
p.add_tile(tile_source, **tile_renderer_options)

# 其他参数
p.xaxis.visible = False
p.yaxis.visible = False 
p.xgrid.grid_line_color = None 
p.ygrid.grid_line_color = None 
p.legend.orientation = "horizontal"
p.legend.location = "top_center"
p.legend.click_policy="hide" # 点击图例显示、隐藏图形
p.sizing_mode = 'scale_width'
# 显示
show(p)

卫星地图

civilpy:Python加载basemap绘制分省地图1 赞同 · 1 评论文章

注:folium在一定程度上要比basemap好用一些;至于Echarts或者腾讯地图API的热力图,也是可以的。不过这些API在一些复杂场景体验并不是很好,如与movepy进行交互实现动态显示路径。



相关文章

基于Python的地图绘制教程

本文将介绍通过Python绘制地形图的方法,所需第三方Python相关模块包括 rasterio、geopandas、cartopy 等,可通过 pip 等方式安装。1 示例代码1.1 导入相关模块...

GeoPandas轻松绘制交互式在线地图

1 简介今天为大家详细介绍新版geopandas中,利用explore()制作在线地图可视化的方法:2 在geopandas中制作在线地图可视化explore()方法类似我们熟悉的plot()方法,是...

Python高德地图指定区域经纬度数据抓取

在这里插入图片描述@Author : Runsen高德地图【东莞理工学院】如下链接为从高德地图获取【东莞理工学院】这个区域边界经纬度坐标点的链接https://ditu.amap.com/servic...

DeepSeek代码之旅2:卫星地图标记方法之——Pyside6实现

现在写代码,开始习惯把DeepSeek当作字典工具了,对于自己陌生的地方,问一问它,它均会给出详细的答案,包括使用方法方案,这以后的程序员真要得加油了!普通程序员危机重重了!不多说了,那个行业都要多学...

软件测试|教你用matplotlib绘制热力图

前言热力图,是一种通过对色块着色来显示数据的统计图表。绘图时,需指定颜色映射的规则。例如,较大的值由较深的颜色表示,较小的值由较浅的颜色表示;较大的值由偏暖的颜色表示,较小的值由较冷的颜色表示,等等。...