Python CSV 模块通关秘籍:数据表格处理不求人
对话实录
小白:(苦恼)我导出的CSV用Excel打开全是乱码!
专家:(递上秘籍)(掏出魔法书)**编码问题!用utf-8-sigma保存!
CSV格式初体验
CSV后缀的文件是标准文件格式,可以通过文本编辑器或者excel表格打开,
使用非常广泛;使用文本编辑器打开后,每一行都以英文逗号隔开。
基础操作,初窥门径
1. 模块导入
Python 内置了csv模块,无需额外安装,直接导入即可:
import csv
2.常用函数速查表
函数 / 类名 | 作用 | 示例场景 |
csv.reader | 按行读取 CSV 文件 | 逐行解析日志文件 |
csv.writer | 按行写入 CSV 文件 | 批量写入用户数据 |
csv.DictReader | 以字典形式读取 CSV 文件 | 按字段名提取学生成绩 |
csv.DictWriter | 以字典形式写入 CSV 文件 | 生成结构化报表 |
3.使用csv.reader逐行读取CSV文件
with open('data.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
for row in reader:
print(row) # 输出 ['name', 'age'], ['Alice', '25'], ['Bob', '30']
4. 使用csv.writer写入CSV文件
data = [
['Charlie', 35],
['David', 40]
]
with open('new_data.csv', 'w', encoding='utf-8-sig', newline='') as f:
writer = csv.writer(f)
writer.writerows(data)
专家提醒:使用utf-8-sig编码解决Excel的乱码问题!
5. 使用csv.DictReader以字典形式读取 CSV 文件
with open('data.csv', 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
reader.fieldnames = ['a','b']
for row in reader:
print(row['a']) # 输出 'Alice', 'Bob'
专家提醒:csv_read.fieldnames = ['a','b'] 表示设置每一行数据对应的字典的key值,如果不设置,会使用csv第一行的内容作为字典的key
6. 使用csv.DictWriter以字典形式写入 CSV 文件
fieldnames = ['name', 'age']
with open('new_dict_data.csv', 'w', encoding='utf-8', newline='') as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerow({'name': 'Eve', 'age': 28})
writer.writerows([{'name': 'Eve', 'age': 28}])
专家提醒:使用csv.DictWriter()函数,参数fieldnames定义字典的key,通过writeheader函数写入csv文件的第一行,通过writerows函数写入列表中的所有字典对象的value值或者writerow函数写入单个字典对象。
实际案例
案例 1:按列提取数据
从scores.csv中提取数学成绩:
math_scores = []
with open('scores.csv', 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
math_scores.append(int(row['math']))
print(math_scores) # 输出 [85, 78]
案例 2:数据清洗与转换
将日期格式dd/mm/yyyy转为yyyy-mm-dd:
new_data = []
with open('dates.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
for row in reader:
date_parts = row[0].split('/')
new_date = f"{date_parts[2]}-{date_parts[1]}-{date_parts[0]}"
new_data.append([new_date])
with open('new_dates.csv', 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
writer.writerows(new_data)
案例 3:合并多个 CSV 文件
合并file1.csv和file2.csv:
merged_data = []
for filename in ['file1.csv', 'file2.csv']:
with open(filename, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
merged_data.extend([row for row in reader])
with open('merged.csv', 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
writer.writerows(merged_data)
闭坑指南
换行符问题
错误示范(Windows 下多出空行):
with open('test.csv', 'w', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow(['test'])
正确做法(添加newline=''):
with open('test.csv', 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
writer.writerow(['test'])
数据类型转换
错误示范(直接比较字符串):
with open('scores.csv', 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
if row['math'] > 80: # 字符串比较错误
print(row)
正确做法(转换为数值):
with open('scores.csv', 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
if int(row['math']) > 80:
print(row)
专家工具箱
1. 处理复杂分隔符
读取制表符分隔的文件:
with open('tab_separated.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='\t')
for row in reader:
print(row)
2 自定义CSV格式
csv.register_dialect('my_dialect',
delimiter='|',
quoting=csv.QUOTE_MINIMAL)
with open('data.csv', 'w') as f:
writer = csv.writer(f, dialect='my_dialect')
3. 处理百万级大文件
def process_large_file(file_path):
with open(file_path) as f:
reader = csv.reader(f)
for row in reader:
process(row) # 逐行处理,避免内存爆炸
4. 与Pandas配合使用
import pandas as pd
# 读取CSV
df = pd.read_csv('big_data.csv')
# 写入CSV
df.to_csv('output.csv', index=False)
小白:(豁然开朗)原来 CSV 模块能这么高效处理数据!
专家:(微笑)记住:掌握 CSV 模块,数据表格处理就能得心应手!