Python实现多进程的四种方式

方式一: os.fork()

# -*- coding:utf-8 -*-
"""
pid=os.fork()
  1.只用在Unix系统中有效,Windows系统中无效
  2.fork函数调用一次,返回两次:在父进程中返回值为子进程id,在子进程中返回值为0
"""
import os
pid=os.fork()
if pid==0:
  print("执行子进程,子进程pid={pid},父进程ppid={ppid}".format(pid=os.getpid(),ppid=os.getppid()))
else:
  print("执行父进程,子进程pid={pid},父进程ppid={ppid}".format(pid=pid,ppid=os.getpid()))

方式二: 使用multiprocessing模块: 创建Process的实例,传入任务执行函数作为参数

# -*- coding:utf-8 -*-
"""
Process常用属性与方法:
  name:进程名
  pid:进程id
  run(),自定义子类时覆写
  start(),开启进程
  join(timeout=None),阻塞进程
  terminate(),终止进程
  is_alive(),判断进程是否存活
"""
import os,time
from multiprocessing import Process
def worker():
  print("子进程执行中>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
  time.sleep(2)
  print("子进程终止>>> pid={0}".format(os.getpid()))
def main():
  print("主进程执行中>>> pid={0}".format(os.getpid()))
  ps=[]
  # 创建子进程实例
  for i in range(2):
    p=Process(target=worker,name="worker"+str(i),args=())
    ps.append(p)
  # 开启进程
  for i in range(2):
    ps[i].start()
  # 阻塞进程
  for i in range(2):
    ps[i].join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式三: 使用multiprocessing模块: 派生Process的子类,重写run方法

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Process
class MyProcess(Process):
  def __init__(self):
    Process.__init__(self)
  def run(self):
    print("子进程开始>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
    time.sleep(2)
    print("子进程终止>>> pid={}".format(os.getpid()))
def main():
  print("主进程开始>>> pid={}".format(os.getpid()))
  myp=MyProcess()
  myp.start()
  # myp.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式四: 使用进程池Pool

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Pool
def worker(arg):
  print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
  time.sleep(0.5)
  print("子进程终止>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
def main():
  print("主进程开始执行>>> pid={}".format(os.getpid()))
  ps=Pool(5)
  for i in range(10):
    # ps.apply(worker,args=(i,))     # 同步执行
    ps.apply_async(worker,args=(i,)) # 异步执行
  # 关闭进程池,停止接受其它进程
  ps.close()
  # 阻塞进程
  ps.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

最后,小编想说:我是一名python开发工程师,

整理了一套最新的python系统学习教程,

想要这些资料的可以关注私信小编“01”即可(免费分享哦)希望能对你有所帮助

相关文章

Python 多任务编程

多任务的介绍利用现学知识能够让两个函数或者方法同时执行吗?不能,因为之前写的程序都是单任务的,也就是说一个函数或者方法执行完成另外一个函数或者方法才能执行,要想实现这种操作就需要使用多任务多任务的最大...

python多任务编程

Process进程类的说明Process([group [, target [, name [, args [, kwargs]]]]])group:指定进程组,目前只能使用Nonetarget:执行...

【Python程序开发系列】一文教你使用协程处理多任务(案例源码)

这是Python程序开发系列原创文章,我的第188篇原创文章。一、协程相关背景知识前文回顾:Python语言高级实战-基于协程的方式来实现异步并发编程(附源码和实现效果)【Python程序开发系列】进...

python多进程的分布式任务调度应用场景及示例

多进程的分布式任务调度可以应用于以下场景:分布式爬虫:import multiprocessing import requests def crawl(url): response = re...

Python中的多进程详解,让你的程序更快更强!

Python是一门高级编程语言,拥有简单易用、面向对象、可扩展等优点,因此被广泛应用于各种领域。但是在Python中,由于GIL(全局解释器锁)的存在,导致了多线程的效率不高。因此,在某些情况下,我们...