Python常用的10种数据分析图表-Seaborn篇

liftword1周前 (12-20)技术文章13

内置示例数据集

seaborn内置了十几个示例数据集,通过load_dataset函数可以调用。 其中包括常见的泰坦尼克、鸢尾花等经典数据集。

# 查看数据集种类
import seaborn as sns
sns.get_dataset_names()
import seaborn as sns
# 导出鸢尾花数据集
data = sns.load_dataset('iris')
data.head()

1、散点图

函数sns.scatterplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
# 小费数据集
tips = sns.load_dataset('tips')
ax = sns.scatterplot(x='total_bill',y='tip',data=tips)
plt.show()

2、条形图

函数sns.barplot 显示数据平均值和置信区间

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
# 小费数据集
tips = sns.load_dataset("tips")
ax = sns.barplot(x="day", y="total_bill", data=tips)
plt.show()

3、线型图

函数sns.lineplot 绘制折线图和置信区间

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
fmri = sns.load_dataset("fmri")
ax = sns.lineplot(x="timepoint", y="signal", data=fmri)
plt.show()

4、箱线图

函数seaborn.boxplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)
plt.show()

5、直方图

函数seaborn.distplot

import seaborn as sns
import numpy as np
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

np.random.seed(0)
x = np.random.randn(1000)
ax = sns.distplot(x)
plt.show()

6、热力图

函数seaborn.heatmap

import numpy as np
np.random.seed(0)
import seaborn as sns 
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

uniform_data = np.random.rand(10, 12)
ax = sns.heatmap(uniform_data)
plt.show()

7、散点图矩阵

函数sns.pairplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

iris = sns.load_dataset("iris")
ax = sns.pairplot(iris)

plt.show()

8、分类散点图

函数seaborn.catplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

exercise = sns.load_dataset("exercise")
ax = sns.catplot(x="time", y="pulse", hue="kind", data=exercise)\

plt.show()

9、计数条形图

函数seaborn.countplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

titanic = sns.load_dataset("titanic")
ax = sns.countplot(x="class", data=titanic)

plt.show()

10、回归图

函数 seaborn.lmplot 绘制散点及回归图

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline

tips = sns.load_dataset("tips")
ax = sns.lmplot(x="total_bill", y="tip", data=tips)

plt.show()

相关文章

第4天|16天搞定Python数据分析,图表,靓靓靓

统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。它具有直观、形象、生动、具体等特点。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。在上一篇《第3天|...

以下是一份关于“Python 数据分析

以下是一份关于“Python 数据分析”的学习路径规划:---# 《Python 数据分析学习路径规划》## 一、基础准备1. 了解数据分析的基本概念和流程,包括数据收集、数据清洗、数据分析、数据可视...

Python如何实现对Excel表格数据的分析处理?

在Python中提供了很多的用来处理和分析Excel表格数据的依赖库,比较常见的有pandas用于数据分析和处理,或者是用于读取Excel文件的openpyxl和xlrd,其中openpyxl适用于....

Python数据分析:利用Pandas进行数据挖掘

数据分析是现代商业和科研中不可或缺的技能,而Python的Pandas库则是进行数据分析的强大工具。Pandas提供了丰富的数据结构和数据分析功能,使得处理和分析数据变得更加简单和高效。以下是一些使用...

第13天|16天搞定Python数据分析,geopandas

有人升级扩展Matplotlib图表,就会有人升级扩展pandas。好多人可能会认为扩展pandas的,必然是算法,可万万没想的竟然是地理空间,就问你惊不惊喜意不意外。GeoPandas是一个开源项目...

基于Django结合Pyecharts实现数据可视化

01前言我们都知道python上的一款可视化工具matplotlib,当然百度开源的一个可视化JS工具-Echarts也非常好用,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平...