【Python时序预测系列】一文搞明白时序数据输入到LSTM模型的格式

liftword4个月前 (01-10)技术文章36

这是我的第276篇原创文章。

一、引言

前面我介绍了多个方法实现单变量和多变量时序数据的单站点单步预测,好多小伙伴最近问我这个LSTM模型数据的输入的格式是怎么样的,今天我专门写一篇文章来聊一聊这个问题,希望对大家有所启发和帮助。

二、实现过程

2.1 单变量时序数据

1、原始data

原始数据是一个144行1列的(144,1)的dataframe:

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(115,1)的二维数组:

3、创建滑动窗口数据集

将train_data_scaler集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为12,i的范围0-102,103取不到:

当i=0时,取出train_data_scaler第【1-12】行第【1】列的12条数据作为X_train[0],取出train_data_scaler第【13】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-13】行第【1】列的12条数据作为X_train[1],取出train_data_scaler第【14】行第【1】列的1条数据作为Y_train[1];

...

当i=102时,取出train_data_scaler第【103-114】行第【1】列的12条数据作为X_train[102],取出train_data_scaler第【115】行第【1】列的1条数据作为Y_train[102];

返回的X_train是一个(103,12,1)的三维数组;Y_train是一个(103,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(103,12,1)的三维数组,三个维度分别表示(样本数,时间步长,特征数)
  • Y_train是一个(103,1)的二维数组,两个维度分别表示(样本数,标签)
  • 类似一个103行(12*1+1)列的表格,前(12*1)列是特征,第(12*1+1)列是标签

2.2 多变量时序数据

1、原始的data

是一个(5203,5)的dataframe:

2、数据集按照8:2划分,并进行归一化处理

train_data_scaler是一个(4162,5)的二维数组:

3、创建滑动窗口数据集

将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):

def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size, 0:data.shape[1]])
        Y.append(data[i+window_size,0])
    return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)

这里我假设窗口window_size设为30,i的范围0-4131:

当i=0时,取出train_data_scaler第【1-30】行第【1-5】列的12条数据作为X_train[0],取出train_data_scaler第【31】行第【1】列的1条数据作为Y_train[0];

当i=1时,取出train_data_scaler第【2-31】行第【1-5】列的12条数据作为X_train[1],取出train_data_scaler第【32】行第【1】列的1条数据作为Y_train[1];

...

当i=4131时,取出train_data_scaler第【4132-4161】行第【1-5】列的12条数据作为X_train[4131],取出train_data_scaler第【4162】行第【1】列的1条数据作为Y_train[4131];

返回的X_train是一个(4132,30,5)的三维数组;Y_train是一个(4132,1)的二维数组;

X_train = np.reshape(X_train, (X_train.shape[0], window_size, 5)

经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。

4、构建 LSTM 模型

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 5)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。

5、训练 LSTM 模型

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
  • X_train是一个(4132,30,5)的三维数组;(样本数,时间步长,特征数)
  • Y_train是一个(4132,1)的二维数组;(样本数,标签)
  • 类似一个4132行(30*5+1)列的表格,前(30*5)列是特征,第(30*5+1)列是标签

三、小结

由于滑动窗口,实际的训练数据数量少一个窗口数量,实际能预测的数据量也少一个窗口数量。

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python时序预测系列】一文搞明白时序数据输入到LSTM模型的格式(案例解读)

相关文章

怎样用Python进行数据转换和归一化

怎样用Python进行数据转换和归一化 1、概述 实际的数据库极易受到噪声、缺失值和不一致数据的侵扰,因为数据库太大,并且多半来自多个异种数据源,低质量的数据将会导致低质量的数据分析结果,大量的数据...

再见了,Python~

这几天,很多同学问到,关于Python数据分析方面的操作。用起来头疼,需要不断的查询。所以,今天给大家总结了100个最最核心的操作。如果再遇到问题,这里直接查看,超级方便,基本日常使用的都有了~需要本...

一文带您了解随机梯度下降(SGD):python代码示例

在机器学习领域,梯度下降扮演着至关重要的角色。随机梯度下降(Stochastic Gradient Descent,SGD)作为一种优化算法,在机器学习和优化领域中显得尤为重要,并被广泛运用于模型训练...

Python机器学习库Sklearn系列教程(14)-逻辑回归

参数penalty : str, ‘l1’ or ‘l2’LogisticRegression和LogisticRegressionCV默认就带了正则化项。penalty参数可选择的值为"l1...

Python环境下信号处理的若干例子(第一篇)

基于python的小波分解信号降噪方法算法程序使用小波多分辨分析对信号进行降噪,降噪算法流程大致如下:(1)去趋势项(如直流电流),并将数据归一化到区[0, 1];(2)进行多级小波分解;(3)使用步...