【Python机器学习系列】一文教你建立SVR模型预测房价(源码)

liftword4个月前 (01-10)技术文章36

这是我的第270篇原创文章。

一、引言

对于表格数据,一套完整的机器学习建模流程如下:

针对不同的数据集,有些步骤不适用,其中橘红色框为必要步骤,欢迎大家关注翻看我之前的一些相关文章。前面我介绍了机器学习模型的二分类任务,接下来做一个机器学习模型的回归任务系列,由于本系列案例数据质量较高,有些步骤跳过了,跳过的步骤将单独出文章总结!在Python中,可以使用Scikit-learn库来构建SVR回归模型进行预测,本文以预测房价为例,对这个过程做一个简要解读。

二、实现过程

2.1 读取数据

filename = 'data.csv'
dataset = pd.read_csv(filename, names=names, delim_whitespace=True)
df = pd.DataFrame(dataset)

df:

2.2 数据集划分

features = names[:-1]
target = ['MEDV']
#  划分数据集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

2.3 数据归一化

mm1 = MinMaxScaler()   # 特征进行归一化
X_train_m = mm1.fit_transform(X_train)
mm2 = MinMaxScaler()     # 标签进行归一化
y_train_m = mm2.fit_transform(y_train)

2.4 建模预测

model = SVR()
X_test_m = mm1.transform(X_test) # 注意fit_transform() 和 transform()的区别
y_test_pred_m = model.predict(X_test_m)

2.5 结果可视化

# 训练集预测值与真实值的对比
plt.plot(list(range(0,len(X_train))),y_train,marker='o')
plt.plot(list(range(0,len(X_train))),y_train_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('训练集预测值与真实值的对比')
plt.show()

结果:

# 验证集预测值与真实值的对比
plt.plot(list(range(0,len(X_test))),y_test,marker='o')
plt.plot(list(range(0,len(X_test))),y_test_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('验证集预测值与真实值的对比')
plt.show()

结果:

2.6 评价指标

# 评价指标
trainScore1 = math.sqrt(mean_squared_error(y_train, y_train_pred))
print('Train Score: %.2f RMSE' % (trainScore1))
testScore1 = math.sqrt(mean_squared_error(y_test, y_test_pred))
print('Test Score: %.2f RMSE' % (testScore1))

trainScore2 = mean_absolute_error(y_train, y_train_pred)
print('Train Score: %.2f MAE' % (trainScore2))
testScore2 = mean_absolute_error(y_test, y_test_pred)
print('Test Score: %.2f MAE' % (testScore2))

trainScore3 = r2_score(y_train, y_train_pred)
print('Train Score: %.2f R2' % (trainScore3))
testScore3 = r2_score(y_test, y_test_pred)
print('Test Score: %.2f R2' % (testScore3))

trainScore4 = mean_absolute_percentage_error(y_train, y_train_pred)
print('Train Score: %.2f MAPE' % (trainScore4))
testScore4 = mean_absolute_percentage_error(y_test, y_test_pred)
print('Test Score: %.2f MAPE' % (testScore4))

结果打印:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python机器学习系列】一文教你建立SVR模型预测房价(案例+源码)

相关文章

提升数据质量的秘密武器:最小-最大归一化全揭秘

最小-最大归一化(Min-Max Normalization)是一种常见的数据预处理技术,用于将特征数据缩放到一个固定的范围(通常是[0, 1])。这种归一化方法通过将数据按比例缩放,使得数据集的最小...

147.Python——图像预处理操作:缩放和裁剪

在人工智能计算机视觉任务中,经常需要对图像进行预处理操作,比如,在图像分类任务中,我们需要训练图像数据大小一般为:224*224,416*416等,但在实际给的图像数据大小并不是这样的大小,所以需要需...

如何提高PyTorch“炼丹”速度?这位小哥总结了17种方法

杨净 发自 凹非寺量子位 报道 | 公众号 QbitAI如何提升PyTorch“炼丹”速度?最近,有一位名叫Lorenz Kuhn的小哥,分享了他在炼丹过程中总结的17种投入最低、效果最好的提升训练速...

Python数据分析(五)Pandas数据预处理

合并数据在实际工作中,我们的数据源往往是来自多个地方(比如分散在不同的表里),具体分析的时候需要把相关联的数据信息整合在一张表里,可能会有如下操作:? 横向或纵向堆叠合并数据? 主键合并数据? 重叠合...

Python机器学习库Sklearn系列教程(14)-逻辑回归

参数penalty : str, ‘l1’ or ‘l2’LogisticRegression和LogisticRegressionCV默认就带了正则化项。penalty参数可选择的值为"l1...

【Python时序预测系列】基于双向LSTM实现单变量时间序列预测

这是我的第378篇原创文章。一、引言双向LSTM是一种特殊类型的循环神经网络(RNN),它能够同时考虑序列数据的前向和后向信息,从而提高预测精度。下面是一个简单的示例,包括数据准备、模型构建和训练步骤...