Python数据分析必备知识(1)(python教程数据分析)

liftword19小时前技术文章4

1.重定向终端输出内容

使生成的结果移动到其他位置

# 重定向, 使生成的结果移动到其他位置
import sys

sys.stderr = sys.stdout

print(dir(sys))  # ,,,,,'__stderr__', '__stdin__', '__stdout__',,,,,,

# 使用场景:脚本上线时,想要把输出结果和错误记录保存成log,方便查看。
"""
stdout用于print()和状态表达式的结果输出,及input()的瞬时输出
"""
import sys
# 将当前默认输出路径保存为__str
__stout__ = sys.stdout
# 将后续print输出结果直接写入在对应的文件
sys.stdout = open('log_test.txt','a')

print('输出结果到log_test.txt文件里')

"""
stderr与stdout一样,用于重定向错误至某个文件

"""
# 将当前的错误输出结果错误为__stderr__
__stderr = sys.stderr
# 将后续的报错信息写入对应的文件中
sys.stderr = open('errorlog.txt','a')
import traceback

try:
    10/0
except:
    traceback.print_exc()

示图

2. 获取当前文件夹的方法

"""
获取当前文件夹的方法
"""

import os

# 获取当前文件所在位置的方法
print(os.path.abspath(__file__))
# 获取当前文件所在文件夹的方法
print(os.path.dirname(os.path.abspath(__file__)))
# 拼接路径,在当前文件所在文件夹位置下再加一个test文件夹
print(os.path.join(os.path.dirname(os.path.abspath(__file__)),'test'))
# 拼接路径,在当前文件所在文件夹位置下再加一个test.py文件
print(os.path.join(os.path.dirname(os.path.abspath(__file__)),'test.py'))

# 获取当前文件名
# 获取当前文件的文件名
print(os.path.basename(os.path.abspath(__file__)))
# 获取当前文件所在的文件夹的文件名
print(os.path.basename(os.path.dirname(os.path.abspath(__file__))))


# 创建递归文件夹  exist_ok =True 存在就不创建
# 在当前文件路径下创建和此脚本平行的文件夹B
os.makedirs('C',exist_ok=True)

# 获取当前文件路径和文件所在的文件夹名
folder_path,file_name = os.path.split(os.path.abspath(__file__))
# 当前文件夹路径
print(folder_path)
# 当前文件名
print(file_name)

示图

3.判断LIST为空的简便方法

"""
判断list为空的简便方法
"""

list1 = [1]
list2 = []

if list1:
    print('list1有数据')

if list2:
    pass
else:
    print('list2没数据')

示图

4.如何用一套脚本执行两套逻辑

"""
如何用一套脚本执行两套逻辑
"""

# 如果isONE为True,执行逻辑一;如果isONE为False,执行逻辑二
isONE = True

try:
    if isONE:
        print('执行逻辑一')
    else:
        print('执行逻辑二')
except:
    print('启动失败')

示例:

5.如何用PANDAS修改EXCEL表里面某一列的值

"""
如何修改pandas某一列的值
"""
import pandas as pd


# 此次需要安装pandas和xlrd,openpyxk模块,尤其注意高版本的xlrd模块依旧支持读取.xls文件。
#  安装pandas包      pip install pandas   # 用0.25.3版本演示
# 网上推荐1.2.0版本   pip install xlrd ==1.2.0   执行此命令安装不上时,可以尝试用conda环境
# openpyxl安装      pip install openpyxl
file_path = r'./demo5.xlsx'
table = pd.read_excel(file_path)
#
# # 方式一
table['测试3'] = '5'
print(table)
print(table['测试3'].dtype)   # object

# 方法二
for i in range(len(table['测试4'])):
    table['测试4'][i] = '6'

print(table['测试4'].dtype)   # int64

# 或者
# for i in range(table.shape[0]):
#     table['测试4'][i] = '6'

# 方法二适合里面有不同情况,加if时用
file_path = r'demo5.1.xlsx'
table.to_excel(file_path,index=False)

示图

6. DATAFRAME数组里面时间列有0的逻辑转换

"""
调整pandas里面是列的时间
"""
import os
import datetime
import pandas as pd

file_path = r'./demo6.xlsx'
a = pd.read_excel(file_path)
print(a)  # 可以看到生产日期这一列有三种格式
print(a['生产日期'].dtype)   # object

for i in range(len(a['生产日期'])):
    # 如果为0,修改为19000101
    if  a['生产日期'][i]== 0:
        a['生产日期'][i] = datetime.datetime.strptime('19000101','%Y%m%d')
    # 如果是8位,转成时间格式
    elif len(str(a['生产日期'][i])) == 8:
        temp = datetime.datetime.strptime(str(a['生产日期'][i]),'%Y%m%d')
        a['生产日期'][i] = pd.Timestamp(temp)
    # 本来就是%y-%m-%d %h:%m:%s'的,不做处理
    else:
        pass

file_path = r'./demo6.1.xlsx'
if (os.path.exists(file_path)):
    os.remove(file_path)
a.to_excel(file_path,index=False)
print(a['生产日期'].dtype)   # object

示图

7.DATAFRAME里面的时间转换

"""
时间转换脚本

strptime  按照特点时间格式将字符串转换(解析)为时间类型
strftime   将时间格式化,转字符串

parser.parse 字符串转成时间格式
"""
import pandas as pd
import datetime
from dateutil import parser

# 打印当前时间
print('打印当前时间:',datetime.datetime.now())
print('打印当前时间类型:',type(datetime.datetime.now()))

# 将当前时间转成字符串
print('当前时间转成字符串:',datetime.datetime.now().strftime('%Y%m%d'))
print('查看当前时间转成字符串后的类型',type(datetime.datetime.now().strftime('%Y%m%d')))

# 字符串转时间
a = '2022/12/30'
print('a:',a)
print('a的类型',a)
b = parser.parse(a)
print('b:',b)
print('查看b的类型',type(b))
print('用时间戳转a',pd.Timestamp(a))

c = '19000101'
print('用strptime转成时间类型',datetime.datetime.strptime(c,'%Y%m%d'))

print('获取当前时间的年月日',datetime.datetime.now().date())
print('获取当前时间的年',datetime.datetime.now().year)
print('获取当前时间的月',datetime.datetime.now().month)

示图

8. 日期的取整逻辑

"""
日期取整的方式

python timedela() 和 relativedelta()的区别

在挖掘特征时,往往需要按照说几句段来统计特征,例如最近一个月、最近三个月、最近半年、最近一年  某用户的行为数据,那么如何计算筛选这些时间点

1.timedelta()  函数仅支持days和weeks参数
2.relativedelta() 函数可以支持年、月、日、周、时、分、秒参数
"""
import datetime
import pandas as pd

from dateutil.relativedelta import relativedelta

# 当前时间
print(datetime.datetime.now())
# 当前时间加2个月
print(datetime.datetime.now() + relativedelta(months=2))
print('当前时间的字符串形式',datetime.datetime.now().strftime('%Y%m%d'))

# 获取2022年1月1日到2023年3月1日的时间
start_time = '20220101'
end_time = '20230301'
print(datetime.datetime.strptime(start_time,'%Y%m%d') - datetime.datetime.strptime(end_time,'%Y%m%d'))
# 获取开始到结束的间隔月份
print(datetime.datetime.strptime(end_time,'%Y%m%d').date() - datetime.datetime.strptime(start_time,'%Y%m%d').date())

# 方法一

start_time = pd.Timestamp(start_time)
for i in range(5):
    start_time = start_time + relativedelta(days=90)
    print('for循环的时间的范围',start_time)

# 重点:这个5如何确定呢
start_time = '20220101'
start_time_year = datetime.datetime.strptime(start_time,'%Y%m%d').year
start_time_month = datetime.datetime.strptime(start_time,'%Y%m%d').month
end_time = datetime.datetime.strptime(end_time,'%Y%m%d').date()
end_time_year = end_time.year
end_time_month = end_time.month
print(start_time_year,start_time_month,end_time_year,end_time_month)
intermonth = 3
# // 和 / 和 % 均表示的做除法运算
"""
5 / 2  ------> 2.5  正常除
5 // 2 ------> 2    取整
5 % 2  ------> 1     取余
"""
print('取','3//2',3//2,'2//2',2//2,'1//2',1//2)
if start_time_year == end_time_year:
    number = (end_time_month - start_time_month)  // intermonth
    print('同年间隔',number)
else:
    interyear = end_time_year - start_time_year
    number = (interyear * 12 + (end_time_month - start_time_month)) // intermonth
    print('跨年间隔',number)
# 方法二
start_time = '20220101'
start_time = pd.Timestamp(start_time)
while True:
    start_time = start_time + relativedelta(days=90)
    print('while的时间范围',start_time)
    if start_time > pd.Timestamp(end_time):
        break

示图

9.解压当前压缩包下所有文件

"""
压缩问题

shutil.copyfilreobj()  将源文件file-like对象的内容复制到目标file-like对象的方法
"""

import os
import shutil
from zipfile import ZipFile


print('获取当前文件路径',os.path.abspath(__file__))
# 获取当前文件路径 E:\data_analysis\date_analysis_commbat_code\demo9\demo9.py
print('获取当前文件的文件夹名',os.path.dirname(os.path.abspath(__file__)))
# 获取当前文件的文件夹名 E:\data_analysis\date_analysis_commbat_code\demo9
# encode() 原文件转二进制
# decode() 二进制转原文本

def deep_unzip(zip_file):
    """
    递归解压缩并去除目录层级(平铺)
    :param zip_file:
    :return:
    """
    with ZipFile(zip_file) as f_zip:
        for zip_file in f_zip.namelist():
            try:
                zip_path_cn = zip_file.encode('cp437').decode('gbk')
            except UnicodeError:
                zip_path_cn = zip_file.encode('utf-8').decode('utf-8')

            filename = os.path.basename(zip_path_cn)
            if not filename:
                continue
            try:
                if filename.endswith('.zip'):
                    deep_unzip(f_zip.open(zip_file))
                else:
                    with open(os.path.join(os.path.dirname(os.path.abspath(__file__)),filename),'wb') as f:
                        shutil.copyfileobj(f_zip.open(zip_file),f)
            except:
                pass

zip_file= r'E:\data_analysis\date_analysis_commbat_code\demo9\testfolder.zip'
deep_unzip(zip_file)

示图

10.在PYTHON中定义函数限定格式有用吗

"""
Python 定义函数演示限定格式有用吗?

会标黄
不会影响输出,但是日常习惯得培养,如果继承关系多了,很难调试
"""
def test(a:str,b:dict):
    print(type(a),type(b))

test(1,2)
test('张三','李四')
test(True,True)
test('1',{})

示图

11.PYTHON的传参技巧

"""
传参部分

多个参数时,只想改变个别参数时,可以把其他字段设为默认值,当你传入新值时,替换掉默认值
"""

def test1(a,b,c,d):
    print(a)

# test1(5)   ypeError: test1() missing 3 required positional arguments: 'b', 'c', and 'd'

def test2(a=None,b=None,c=None,d=2):
    print(a)
test2(5)   # 5

12.DATAFRAME生成新表的两种方式(行读和列替换)

"""
pandas的常见操作(一)

excel分析有两种方法,一种是行读,逐行读取生成新表;另一种是列读,更换列名即可。
"""
import pandas as pd

table_a = pd.DataFrame([['111','222','3333','4444']]*3,columns=['A','B','C','D'])
print('table_a表为')
print(table_a)


# 张三的数据来源于A的前两位,李四的数据来源于C的前三位,王五的数据来源于D列的前四位

table_b = pd.DataFrame(columns=['A','B','C'],dtype=object)
# 因为pandas版本问题,可能报AttributeError: type object 'object' has no attribute 'dtype'故加 dtype=object

# 行替换
for i in range(table_a.shape[0]):
    table_b.loc[i] = {'A':table_a['A'][i][:2],
                      'B':table_a['B'][i],
                      'C':table_a['C'][i]}

print('table_b为')
print(table_b)

# 列替换
# 方式一
table_a.rename(columns={'A':'替换a列','B':'替换b列','D':'替换d列'},inplace=True)
print('列替换方式一')
print(table_a)
# 方式二
table_c = table_a.rename(columns={'A':'替换a列','C':'替换c列','D':'替换d列'})
print('列替换方式二')
table_c = table_c[['替换a列','替换c列','替换d列']]
print(table_c)
# 方式三
# 批量列替换
table_a.columns = table_a.columns.str.replace('替换a列','AAA')
print('列替换方式三')
print(table_a)

示图

13.必会的时间转换函数PARSER

"""
pandas异常时间处理函数parser
"""
from dateutil import parser
a_time = '19991231'
print('a_time',parser.parse(a_time))
print('a_time的类型',type(parser.parse(a_time)))
b_time = '1999/12/1'
print('b_time',parser.parse(b_time))
print('b_time的类型',type(parser.parse(b_time)))
c_time = '1999-12-1'
print('c_time',parser.parse(c_time))
print('c_time的类型',type(parser.parse(c_time)))


# 再调用datatime进行加工
from datetime import datetime
a_time1=parser.parse(a_time)
print('对a_time1进行格式化',a_time1.strftime('%Y/%m/%d'))
print('对a_time1进行格式化',a_time1.strftime('%Y/%m/%d %H:%M:%S'))
print('对a_time1进行格式化类型',type(a_time1.strftime('%Y/%m/%d %H:%M:%S')))
b_time1=parser.parse(b_time)
print('对b_time1进行格式化',datetime.strftime(b_time1,'%Y/%m/%d'))
print('对b_time1进行格式化',datetime.strftime(b_time1,'%Y/%m/%d %H:%M:%S'))

示图

14.必会的批量处理函数APPLY

"""
pandas的apply()方法是用来调用一个函数,让此函数对数据对象进行批量处理
    apply可以调用pandas的很多对象,如Datafrma,Series,分组对象,各种时间序列等等。
    apply()使用时,通常放入匿名函数lambda的函数表达式,或一个含作为操作运算。
"""
import numpy as np
import pandas as pd
df1 = pd.DataFrame([[4,9]]*3,columns=['第一列','第二列'])
print('df1')
print(df1)


df2 = df1.apply(np.sum,axis=1)
print('df2,行统计')

print(df2)

# 等价于

df3 = df1.apply(lambda x:np.sum(x),axis=1)
print('df3等价于df2')
print(df3)



df4 = df1.apply(np.sum)
print('df4,默认列统计')
print(df4)

# 等价于
df5 = df1.apply(lambda x:np.sum(x))
print('df5等价于df4')
print(df5)

示图

15.当一列数据中,既有时间类型,又有其他类型,如何转成统一的时间类型?

# 经典案例:某一列中既有时间类型,又有object类型时,如何处理
import pandas as pd
from dateutil import parser
file_path = r'demo15.xlsx'
table = pd.read_excel('demo15.xlsx')
print(table)
print(table['生产日期'].dtypes)

# 编写一个函数 若为时间格式,不做处理;否则,变成时间格式
def datefortmat(x):
    try:
        # 判断是否为int类型,如果是,转成str
        if isinstance(x,int):
            x= str(x)
        result = parser.parse(x)

    except:
        pass
        result = x
    return result

table['生产日期'] = table['生产日期'].apply(datefortmat)
print(table)
print(table['生产日期'].dtypes)

示图

16.获取最新的文件名并重命名

"""
获取最新的文件名并重命名
"""
import os
folder_path = r'E:\data_analysis\date_analysis_commbat_code\demo16'
print(os.listdir(folder_path))

"""
os。path.getmtime()  获取文件最后修改时间
os.path.getctime()  获取文件最后创建时间
"""
file_path = r'E:\data_analysis\date_analysis_commbat_code\demo16\test1'
print(os.path.getmtime(file_path))
file_path = r'E:\data_analysis\date_analysis_commbat_code\demo16\test2'
print(os.path.getctime(file_path))

# 获取当前文件夹的路径
a = os.path.dirname(os.path.abspath(__file__))
print(a)
# 遍历该目录下的文件夹
for i in os.listdir(a):
    print(i)

# 遍历该文件夹下的每个文件
find_file = [a + '\\' + i for i in os.listdir(a)]
# 获取该目录下最后创建文件的时间
print(find_file)
for i in find_file:
    print(os.path.getctime(i))

# 选出这四个个文件中最早创建的文件
pioneer = max(find_file,key=os.path.getctime)
print(pioneer)
# 选出这四个个文件中最晚创建的文件
later = min(find_file,key=os.path.getctime)
print(later)

# 获取最新修改的文件
print(max(find_file,key=os.path.getmtime))
# 获取最后修改的文件
print(min(find_file,key=os.path.getmtime))

# 把最新修改的文件换个名字demo_test16.py
need_file = max([a + '\\' + i for i in os.listdir(a)],key=os.path.getmtime)
print('最新修改的文件',need_file)
print(a)
new_file = os.path.join(a,'test_demo16.py')
os.rename(need_file,new_file)
print(os.listdir(a))

示例

17 代码中常见的R和F。(书写文件路径的三种方式)

"""
r和f
"""
# r 主要用在路径上,保证路径读取时不能漏读
import os

file_path = r'E:\data_analysis\date_analysis_commbat_code\demo16\test17.py'
print(file_path)
# 不加r时还可以两种方式表示路径
# 方式一
file_path1 = 'E:\\data_analysis\\date_analysis_commbat_code\\demo16\\test17.py'
print(file_path1)
# 方式二
file_path2 = 'E:/data_analysis/date_analysis_commbat_code/demo16/test17.py'
print(file_path2)
print(os.path.dirname(file_path2))

# f'xxx'的含义:在字符串前加f是把字符串格式化,使可以在字符串中直接使用变量
a = 'Python'
print(f'测试 {a}')

示图

18.捕获异常RAISE。(断言)

"""
捕获异常raise

常用的方式
1.单独raise,该语句引发当前上下文中捕获的异常,或默认引发RuntimeError异常
2. raise + 异常类名称: 表示依法执行类型的异常
3.raise + 异常类名称+ (描述信息):在引发指定类型的异常的同时,附带异常的描述信息
"""

try:
    a = input('请输入一个数字:')
    # S.isdigit()返回的是布尔值:True   False
    # S中至少有一个字符且如果S中的所有字符都是数字,那么返回结果就是True;否则,就返回False
    # isalpha() 用于判断字符串的类型
    if  (not a.isdigit()):
        print('不是数字')
        raise ValueError('a 必须是数字')

except ValueError as e:
    # 除了字符串类型外,使用str还是repr转换没有什么区别。
    # 对于字符串类型,repr转换后外层会多一对引号,这一特性有时候在eval操作时有用。
    # 命令行下直接输出对象调用的是对象的repr方法,而print输出调用的是str方法
   print('引发异常',repr(e))


class PrintError(Exception):
    pass

try:
    a = input('请输入一个数字:')
    b = a + '11'
    if b != 15:
        raise PrintError('请重新输入')
except Exception as e:
    print(e)

示例

19.常见的NOT、AND、OR的优先级问题

"""
not 、and 、or 的优先级问题
优先级:not>and>or
"""
a = True
b = False
c = False
if a and not b and a or b:
    print('为真')

if a or b and c:
    print('为真')

if a and not b:
    print('为真')

# 测试带括号有效果吗  ----有
if not a and  b or c :
    print('为真')
else:
    print('为假')

print('&'*30)
if not (a and  b) or c :
    print('为真')
else:
    print('为假')

示图



20.删除文件下所有文件

"""
删除文件夹下所有文件
"""
import os
# 获取需要删除的文件夹
print(os.path.join(os.path.dirname(os.path.abspath(__file__)),'test'))

floder_path =os.path.join(os.path.dirname(os.path.abspath(__file__)),'test')

def del_file(path):
    ls = os.listdir(path)
    for i in ls:
        c_path = os.path.join(path,i)
        if os.path.isdir(c_path):  # 如果是文件夹,递归调用
            del_file(c_path)
        else:
            os.remove(c_path)  # 如果是文件,直接删除
    return

del_file(floder_path)

示图

相关文章

python 判断变量是否是 None 的三种写法

代码中经常会有变量是否为None的判断,有三种主要的写法:第一种是 if x is None ;第二种是 if not x: ;第三种是 if not x is None (这句这样理解更清晰 if...

简单学Python——关键字2——True和False

True和False是Python中的两个关键字,是布尔类型,分别用于表示真和假。1、True和False表示真和假的例子:#将1==2的结果赋值给了x x=1==2 #将1==2的结果赋值给了y y...

Python基础:pass语句知识详解(python中pass)

欢迎你来到站长在线的站长学堂学习Python知识,本文分享的是《pass语句知识详解》。pass的中文翻译:通过;走过;沿某方向前进;向某方向移动;及格;合格;通行证。在Python中表示空的语句,包...

Python的条件判断(python三个条件判断)

计算机之所以能够执行众多自动化任务,关键在于它具备自行进行条件判断的能力。例如,当输入用户年龄后,依据不同的年龄来打印相应内容,在 Python 程序里,这可以通过 if 语句来实现,示例如下:age...

用python编写判断输入是否为整数的程序

最近在自学python,写了两个小程序,大家帮个看看有没有更好的方式来编写,没学过编程,学起来有点懵。想实现一个功能,就是判断外部输入是否为整数,就是判断是不是数字,要是输入的其他的返回“您输入的信息...

python编程实践:如何将变量正确设置为空?

在Python中,变量是非常重要的一部分。它们用于储存数据,来支持程序的运行。当我们在编程时,将来可能会遇到一个问题:如何将变量正确设置为空?什么是变量?在Python中,变量是程序员用来储存数据的一...