机器学习-逻辑回归分析(Python)
前言
回归和分类方法是机器学习中经常用到的方法
一、分类与回归
1.1什么是分类和回归
区分回归问题和分类问题:
回归问题:输入变量和输出变量均为连续变量的问题;
分类问题:输出变量为有限个离散变量的问题。
因此分类及回归分别为研究这两类问题的方法。
1.2两者区别与联系
区别:从三个维度来对比分类和回归方法:
联系:从prediction角度来看,分类模型和回归模型本质相同,分类模型是将回归模型的输出离散化,比如:
1、Logistic Regression 和 Linear Regression
Linear Regression:输出一个标量wx+b,是连续值,用以处理回归问题;
Logistic Regression:将标量wx+b通过sigmoid函数映射到(0,1)上,并划分一个阈值,大于阈值的分为一类,其他归为另一类,可处理二分分类问题;
对于N分类问题,先得到N组w值不同的wx+b,然后归一化,比如用softmax函数,最后变成N个类上的概率,可处理多分类问题。
2、Support Vector Regression 和 Support Vector Machine
SVR:输出wx+b,即某个样本点到分类面的距离,是连续值,用以处理回归问题;
SVM:将该距离通过sign(·)函数映射,距离为正的样本点为一类,为负的是另一类,故为分类问题。
1.3相应有哪些常用方法
常见的分类方法:
逻辑回归、决策树分类、KNN(K-近邻)分类、贝叶斯分类、人工神经网络、支持向量机(SVM)等
常见的回归方法:
线性回归、多项式回归、逐步回归等
(常见的聚类方法:K-Means(K均值)聚类等)
二、逻辑回归分析
2.1逻辑回归
Logistic回归主要思想是,根据现有数据对决策边界建立回归方程,然后将回归方程映射到分类函数上实现分类。
2.2原理介绍
Logistic回归的原理可以理解为以下四步:
1、利用回归方程表示决策边界
分类问题的目的是找到决策边界,因此我们需要找到一个回归方程来表示这个决策边界: g(W,X)=W^X ,其中 W 代表权重向量。
2、利用 Sigmoid 函数对回归关系进行映射
在面对二分分类问题时,可以用1和0分别代表一种情况,此时利用 Sigmoid 函数:
将回归方程的结果映射到分类函数上,即用 Sigmoid 函数表示拟合函数,这种函数是 S 型的非线性函数。
3、在得到拟合函数后,利用损失函数来评价模型与实际值之间的差异大小
损失函数:
其中 x{i} 代表数据属性值, y{i} 代表数据实际的分类结果, h{W}(x{i}) 代表利用拟合函数得到的预测值,可以用下图表示:
损失函数应满足三个特点,以y{i}=1 时为例:
递减: h{W}(x{i}) 越小,则惩罚力度应越大;
导数绝对值递减:h{W}(x{i}) 越趋近于零,该递减函数的递减幅度也应该越小;
定义域在[0,1]内时,变化幅度应较大。
因此利用满足此条件的逻辑函数作为拟合函数。
4、求出损失函数取得极小值时对应的W ,从而得到拟合函数
损失函数求极值利用梯度下降法,本文不做介绍。
2.3评价指标
常见的分类模型性能指标有准确率(precision)、召回率(recall)、ROC曲线等。
1、混淆矩阵(confusion matrix)
包括分类器预测结果:真正TP(true positive)、真负TN(true negative)、假正FP(false positive)、假负FN(false negative)的数量,其中真正和假负均为正确分类的结果。
2、准确率、真正率及假正率
预测误差(error,ERR)和准确率(accuracy,ACC)都可以表示误分类样本数量的相关信息, ACC=1-ERR=TN+TP}/{TN+TP+FN+FP} 。
真正率(TPR)和假正率(FPR)也是很有参考价值的性能指标, TPR={TP}/{AP} 表示预测与实际均为正类别样本数量 与 实际正样本数量的比值, FPR={FP}/{AN} 表示预测为正类别实际为负类别样本数量 与 实际负样本数量的比值。
3、ROC曲线(receiver operator characteristic)
ROC曲线由变量1-Specificity和Sensitivity绘制,其中横轴1-Specificity=假正率(FPR)、纵轴Sensitivity=真正率(TPR),ROC曲线的对角线表示随机猜测,若ROC曲线在对角线下表示分类器性能比随机猜测还差,ROC曲线下的区域面积(area under the curve,AUC)表示分类模型的性能,反映了模型将正例排在反例前的比例(当AUC=1时,说明将所有正例均排在反例之前)。
原理:
给定 m^{+} 个正例和 n^{-} 个反例,根据学习器预测结果对样例进行排序,然后将分类阈值设置为最大,即所有样例均预测为反例,此时真正例率和假正例率均为0,即在坐标(0,0)处标记一个点。
然后,将分类阈值依次设为每个样例的预测值,即依次将每个样例划分为正例。
设前一个标记点坐标为 (x,y) ,当前若为真正例,则对应标记点坐标为
若当前为假正例,则对应标记点坐标为
然后用线段连接相邻点即得。
意义:
有助于选择最佳阈值:ROC曲线越靠近左上角,模型查全率越高,最靠近左上角的ROC曲线上的点是分类错误最少的最好阈值,其假正例和假反例总数最少。
可以比较不同学习器的性能:将各个学习器的ROC曲线绘制在同一坐标中,直观比较,越靠近左上角的ROC曲线代表的学习器准确性越高。
AUC同时考虑了学习器对于正例和负例的分类能力,在样本不平衡的情况下,依然能对分类器做出合理评价(如癌症预测)。
三、逻辑回归的Python实现
利用Python中sklearn包进行逻辑回归分析。
3.1提出问题
根据已有数据探究“学习时长”与“是否通过考试”之间关系,并建立预测模型。
3.2理解数据
1、导入包和数据
#1.导入包
import warnings
import pandas as pd
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')
#2.创建数据(学习时间与是否通过考试)
dataDict={'学习时间':list(np.arange(0.50,5.50,0.25)),
'考试成绩':[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
dataOrDict=OrderedDict(dataDict)
dataDf=pd.DataFrame(dataOrDict)
dataDf.head()
>>>
学习时间 考试成绩
0 0.50 0
1 0.75 0
2 1.00 0
3 1.25 0
4 1.50 0
2、查看数据
#查看数据具体形式
dataDf.head()
#查看数据类型及缺失情况
dataDf.info()
>>>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 2 columns):
学习时间 20 non-null float64
考试成绩 20 non-null int64
dtypes: float64(1), int64(1)
memory usage: 400.0 bytes
#查看描述性统计信息
dataDf.describe()
>>>
学习时间 考试成绩
count 20.00000 20.000000
mean 2.87500 0.500000
std 1.47902 0.512989
min 0.50000 0.000000
25% 1.68750 0.000000
50% 2.87500 0.500000
75% 4.06250 1.000000
max 5.25000 1.000000
3、绘制散点图查看数据分布情况
#提取特征和标签
exam_X=dataDf['学习时间']
exam_y=dataDf['考试成绩']
#绘制散点图
plt.scatter(exam_X,exam_y,color='b',label='考试数据')
plt.legend(loc=2)
plt.xlabel('学习时间')
plt.ylabel('考试成绩')
plt.show()
从图中可以看出当学习时间高于某一阈值时,一般都能够通过考试,因此我们利用逻辑回归方法建立模型。
3.3构建模型
1、拆分训练集并利用散点图观察
#1.拆分训练集和测试集
from sklearn.cross_validation import train_test_split
exam_X =exam_X.values.reshape(-1,1)
exam_y =exam_y.values.reshape(-1,1)
train_X,test_X,train_y,test_y =train_test_split (exam_X,exam_y,train_size=0.8)
print ('训练集数据大小为', train_X.size,train_y.size)
print ('测试集数据大小为', test_X.size,test_y.size)
>>>
训练集数据大小为 16 16
测试集数据大小为 4 4
#2.散点图观察
plt.scatter (train_X,train_y, color='b', label='train data')
plt.scatter (test_X,test_y, color='r', label='test data')
#plt.plot (test_X,pred_y,color='r')
plt.legend(loc=2)
plt.xlabel('Hours')
plt.ylabel('Scores')
plt.show()
2、导入模型
#3.导入模型
from sklearn.linear_model import LogisticRegression
modelLR=LogisticRegression()
3、训练模型
#4.训练模型
modelLR.fit(train_X,train_y)
3.4模型评估
1、模型评分(即准确率)
modelLR.score(test_X,test_y)
>>>
0.75
2、指定某个点的预测情况
#学习时间确定时,预测为0和1的概率分别为多少?
#学习时间确定时,预测为0和1的概率分别为多少?
modelLR.predict_proba(3)
>>>
array([[0.36720478, 0.63279522]])
#学习时间确定时,预测能否通过考试?
modelLR.predict(3)
>>>
array([1])
3、求出逻辑回归函数并绘制曲线
逻辑回归函数
#先求出回归函数y=a+bx,再代入逻辑函数中pred_y=1/(1+np.exp(-y))
b=modelLR.coef_
a=modelLR.intercept_
print('该模型对应的回归函数为:1/(1+exp-(%f+%f*x))'%(a,b))
>>>
该模型对应的回归函数为:1/(1+exp-(-1.527106+0.690444*x))
逻辑回归曲线
#画出相应的逻辑回归曲线
plt.scatter (train_X,train_y,color='b', label='train data')
plt.scatter (test_X,test_y,color='r', label='test data')
plt.plot (test_X,1/ (1+np.exp(-(a+b*test_X))),color='r')
plt.plot (exam_X,1/ (1+np.exp(-(a+b*exam_X))),color='y')
plt.legend(loc=2)
plt.xlabel('Hours')
plt.ylabel('Scores')
plt.show()
4、得到模型混淆矩阵
from sklearn.metrics import confusion_matrix
#数值处理
pred_y=1/(1+np.exp(-(a+b*test_X)))
pred_y=pd.DataFrame(pred_y)
pred_y=round(pred_y,0).astype(int)
#混淆矩阵
confusion_matrix(test_y.astype(str),pred_y.astype(str))
>>>
array([[1, 1],
[0, 2]])
从混淆矩阵可以看出:
该模型的准确率ACC为0.75;
真正率TPR和假正率FPR分别为0.50和0.00,说明该模型对负例的甄别能力更强(如果数据量更多,该指标更有说服性,而本案例中数据较少,因此受随机影响较大)。
5、绘制模型ROC曲线
from sklearn.metrics import roc_curve, auc ###计算roc和auc
# Compute ROC curve and ROC area for each class
fpr,tpr,threshold = roc_curve(test_y, pred_y) ###计算真正率和假正率
roc_auc = auc(fpr,tpr) ###计算auc的值
plt.figure()
lw = 2
plt.figure(figsize=(10,10))
plt.plot(fpr, tpr, color='r',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) ###假正率为横坐标,真正率为纵坐标做曲线
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel ('False Positive Rate')
plt.ylabel ('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend (loc="lower right")
plt.show()
红线以下部分面积等于0.75,与模型准确率一致
红线以下部分面积等于0.75,即误将一个反例划分为正例。
四、总结
理解回归与分类的关系:两者既有区别(三个维度理解),又有联系(将回归方程映射到分类函数);
逻辑回归的参数及其含义:准确率(ACC:模型预测准确度)、真正率(TPR:模型将正例分类正确的能力)、假正率(FPR:模型将负例分类正确的能力)、ROC曲线(可以反映模型正确识别正/负例的能力,也可利用AUC反映模型准确度)
为帮助更多对人工智能感兴趣的小伙伴们能够有效的系统性的学习以及论文的研究,小编特意制作整理了一份人工智能学习资料给大家,整理了很久,非常全面。
大致内容包括一些人工智能基础入门视频和文档+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等学习资料、课件源码、国内外知名精华资源、以及AI热门论文等全套学习资料。
需要以上这些文中提到的资料,请先关注作者头条【AI乔治】,回复【666】,即可免费获取~~~~
每一个专栏都是大家非常关心,和非常有价值的话题,如果我的文章对你有所帮助,还请帮忙点赞、好评、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!