python对音频的处理

首先,我们需要 import 几个工具包,一个是 python 标准库中的 wave 模块,用于音频处理操作,另外两个是 numpy 和 matplot,提供数据处理函数

一:读取本地音频数据

处理音频第一步是需要从让计算机“听到”声音,这里我们使用 python 标准库中自带的 wave模块进行音频参数的获取

(1) 导入 wave 模块

(2) 使用 wave 中的函数 open 打开音频文件,wave.open(file,mode)函数带有两个参数, 第一个 file 是所需要打开的文件名及路径,使用字符串表示;第二个 mode 是打开的模式,也是用字符串表示 (’rb’或’wb’)

(3) 打开音频后使用 getparams() 获取音频基本的相关参数(nchannels:声道数,sampwidth:量化位数或量化深度,framerate:采样频率,nframes:采样点数)

driver.find_element_by_xpath('//*[@id="zpNav"]/em/a[1]').click()
sleep(2)
driver.find_element_by_xpath('//*[@id="keyword1"]').send_keys('互联网')
#  导入 wave 模块
import wave
#  用于绘制波形图
import matplotlib.pyplot as plt
#  用于计算波形数据
import numpy as np
#  用于系统处理,如读取本地音频文件
import os
# 打开WAV文档
f = wave.open(r"2.wav", 'rb')
# 读取格式信息
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
print(framerate)

二:读取单通道音频,并绘制波形图(常见音频为左右2个声道)

(1) 通过第一步,可以继续读取音频数据本身,保存为字符串格式

readframes读取声音数据,传递一个参数指定需要读取的长度(以取样点为单位),readframes返回的是二进制数据(一大堆bytes),在Python中用字符串表示二进制数据。

strData = f.readframes(nframes)

(2) 如果需要绘制波形图,则需要将字符串格式的音频数据转化为 int 类型

frombuffer:

根据声道数和量化单位,将读取的二进制数据转换为一个可以计算的数组。

通过frombuffer函数将二进制转换为整型数组,通过其参数dtype指定转换后的数据格式。

waveData=np.frombuffer(strData,dtype=np.int16)

此处需要使用到 numpy 进行数据格式的转化

(3) 将幅值归一化

把数据变成(0,1)之间的小数。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。

waveData=waveData*1.0/(max(abs(waveData)))

这一步去掉也可画出波形图,可以尝试不用此步,找出波形图的不同

(4) 绘制图像

通过取样点数和取样频率计算出取样的时间:

time = np.arange(0,nframes)*(1.0/framerate)

import wave
#  导入 wave 模块
import matplotlib.pyplot as plt
#  用于绘制波形图
import numpy as np
#  用于计算波形数据
import os
#    用于系统处理,如读取本地音频文件
f = wave.open(r"di.wav", 'rb')
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
print(framerate)
# 读取波形数据
strData = f.readframes(nframes)
# 将字符串转换为16位整数
waveData = np.frombuffer(strData, dtype=np.int16)
# 幅值归一化
waveData = waveData * 1.0 / (max(abs(waveData)))
# 计算音频的时间
time = np.arange(0, nframes) * (1.0 / framerate)
plt.plot(time, waveData)
plt.xlabel("Time(s)")
plt.ylabel("Amplitude")
plt.title("Single channel wavedata")
plt.show()

效果图


相关文章

Python 4种方法对不同数量级数据归一化

在机器学习和数据处理过程中,对不同数量级的数据进行归一化是一项重要的预处理步骤。归一化可以将数据缩放到同一范围,避免某些特征因数值较大而主导模型训练。Python 提供了多种方法对数据进行归一化,以下...

怎样用Python进行数据转换和归一化

怎样用Python进行数据转换和归一化 1、概述 实际的数据库极易受到噪声、缺失值和不一致数据的侵扰,因为数据库太大,并且多半来自多个异种数据源,低质量的数据将会导致低质量的数据分析结果,大量的数据...

提升数据质量的秘密武器:最小-最大归一化全揭秘

最小-最大归一化(Min-Max Normalization)是一种常见的数据预处理技术,用于将特征数据缩放到一个固定的范围(通常是[0, 1])。这种归一化方法通过将数据按比例缩放,使得数据集的最小...

再见了,Python~

这几天,很多同学问到,关于Python数据分析方面的操作。用起来头疼,需要不断的查询。所以,今天给大家总结了100个最最核心的操作。如果再遇到问题,这里直接查看,超级方便,基本日常使用的都有了~需要本...

在Python中将函数作为参数传入另一个函数中

在我们的Python学习中,我们学到的众多令人瞠目结舌的事实之一是,你可以将函数传入其他函数。你可以来回传递函数,因为在Python中,函数是对象。在使用Python的第一周,你可能不需要了解这些,但...