Python 也有内存泄漏?

liftword1个月前 (03-20)技术文章10

1. 背景

前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。


为了更好地可视化内存占用的变化,将项目占用的机器资源指指标上报到 Prometheus,项目一开始的情况如下(横轴-时间,纵轴-内存):


可以看到内存在不断的增长,到最后 OOM 了,服务重启,确实有内存泄漏的情况。


2. 工具

  • Memray
  • Tracemalloc
  • Memory_profiler


3. 查看是否有线程数泄漏

使用 Memray 查看线程的占用情况,可以看到线程数一直在增长


新增加的线程大部分都是 sockerserver,我查了下,大概率是 SSE 的连接没有释放掉,再看看代码:

   def sse_server(self):
        def streamer():
            while True:
                try:
                    # do yield
                    ...
                except:
                    ...


        response = Response(streamer(), mimetype="text/event-stream")
        response.headers["Cache-Control"] = "no-cache"
        response.headers["X-Accel-Buffering"] = "no"
        return response

如上图看到:try 在 while 里面,如果遇到所有异常,会被 try catch 到,循环并不会结束,如果没有适当的退出机制,这会导致永远也无法结束,资源一直没释放。

解决方案,考虑更全面一些,除了特定的异常,其他的异常都必须中断循环。

def sse_server(self):
    def streamer():
        while True:
            try:
                # 生成事件数据
                data = yield
                # 这里可以添加生成数据的逻辑
            except AllowException:
                # 期待的,能继续生成数据的异常
                continue
            except GeneratorExit:
                # 客户端连接关闭时退出生成器
                break
            except Exception as e:
                # 其他异常处理
                break


    def generate():
        for message in streamer():
            if message:
                yield f"data: {message}\n\n"


    response = Response(generate(), mimetype="text/event-stream")
    response.headers["Cache-Control"] = "no-cache"
    response.headers["X-Accel-Buffering"] = "no"
    return response


本以为已经解决了内存泄漏的问题,没想到一看 prom,内存还是在一直增长,说明还有其他的内存泄漏。

4. 检查依赖 C++ 动态库的代码

这个项目是需要对视频流解码,其中也用到了 ffmpeg 的库,有一部分代码是使用 C++ 写的,这部分需要手动管理内存,这部分管理不好,也会导致内存泄漏。

我把所有申请到内存的都看了一遍,结果发现有网络初始化,没有对应的网络释放,avformat_network_initavformat_network_deinit 函数是成对使用的,avformat_network_deinit 用于关闭网络模块并释放相关资源。如果在程序结束时没有调用这个函数,可能会导致与网络相关的资源没有被正确释放,从而产生内存泄漏。

但这个是在网络不稳定的情况下,一直频繁地断开,重新创建解码线程,内存泄漏才会显现出来,一般在内部,网络稳定的情况下,问题不大。果然,编译完重新跑,内存泄漏还没有解决。

5. 使用 tracemalloc 查看内存增长

import tracemalloc
tracemalloc.start()
# ... 开始程序 ...


snapshot1 = tracemalloc.take_snapshot()
# ... 怀疑有泄漏的代码 ...
snapshot2 = tracemalloc.take_snapshot()


top_stats = snapshot2.compare_to(snapshot1, 'lineno')


for stat in top_stats[:10]:
    print(stat)

跑了2个小时后,发现某一行的内存一直没有释放,count 和 size 一直在增加,并没有释放的迹象。

analyzer_arm_rknn_4.py:397: size=3318 KiB (+18.6 MB), count=39426 (+10), average=501 K

所以读了这部分相关的代码,代码的逻辑大概是:拷贝一张图片,并且再一张图片画框,然后将这张图片发送给上级系统,并将这张图片和信息持久化到自研的文件系统中。

看调试信息,大概率是这张图片内存没有被释放,在 Python 中,如果没有被释放,说明这张图片的引用计数大于 0,一直被某个地方引用到了。过程我就不细聊了,最终发现下面的代码有问题:

    def write_disk(self, force=False):
        t = time.time()


        if self.buffer["total_size"] == 0:
            ...


        elif self.buffer["total_size"] > BUFFER_SIZE or t - self.buffer["t"] > BUFFER_INTERVAL or force:
            ...
            self.buffer["t"] = t
            self.buffer["total_size"] = 0
            try:
                f = open(self.save_path, "rb+")
                for item in self.buffer["tasks"]:
                    item["call"](f, *item["args"])
                f.close()
            except Exception:
                logger.debug(traceback.format_exc())

大概意思是:这张图片先写到缓存中,在缓存超过一定大小或超过一定时间后或force参数为true时,会被写到磁盘中。虽然buffer 的时间和总大小都重新初始化了,但是占比最大的 self.buffer["tasks"] 并没有重置,这个导致图片一直被缓存到 buffer 中没有被释放。

最终封装到 reset_buffer,一起重启,避免忘记重置:

  def reset_buffer(self, t):
     self.buffer["t"] = t
     self.buffer["total_size"] = 0
     self.buffer["tasks"] = []
  def write_disk(self, force=False):
        t = time.time()


        if self.buffer["total_size"] == 0:
            ...


        elif self.buffer["total_size"] > BUFFER_SIZE or t - self.buffer["t"] > BUFFER_INTERVAL or force:
            ...
            try:
                f = open(self.save_path, "rb+")
                for item in self.buffer["tasks"]:
                    item["call"](f, *item["args"])
                f.close()
            except Exception:
                logger.debug(traceback.format_exc())
            self.reset_buffer(t)




这波改完,信心满满,感觉应该彻底解决了。重新跑 了大概1天左右,再抽空看了 prom 内存增长曲线,曲线的斜率变低了(我的心率变高了),说明有效,但没有彻底解决,还得再查.......

6. 重复上面的操作,再看看哪个变量没有被释放

经过一系列的排查,最终发现“嫌疑人“

video_fetcher_2.py:273: size=20.4 MB (+496 kB), count=19082 (+2)  

273 这代码也缓存相关的代码,大概逻辑是将 h264 的视频流添加到缓存,等到一定是条件再写到磁盘。

  if self.record_task:
      with self.record_task_mtx:
         ....
         if self.record_task["now_sec"] == self.record_task["end_sec"] + 1:
             # write disk
             self.record_task = None

因为now_sec不一定是end_sec + 1,也可能是因为网络或者跳过的原因,导致 now_sec 大于 end_sec。所以不能严格地用 +1 来判断。

可以改成“大于等于”, 应该就解决了:

  if self.record_task:
      with self.record_task_mtx:
         ....
         if self.record_task["now_sec"] >= self.record_task["end_sec"] + 1:
             # write disk
             self.record_task = None


接下来跑了1天,基本上能回到原来的位置(横轴-时间,纵轴-内存):

7. 总结

通过1个项目,我们可以遇到 Python 项目中的几种内存没有释放的例子:

  • Python 依赖的资源库没有释放内存
  • 使用缓存时,确认过期后没有释放内存
  • 缓存的过期条件有问题,没有触发
  • 线程没有释放

解决方案:

  • 没有 GC 的语言,一定要检查申请的资源是否有释放
  • 使用线程或者进程时,尽量使用线程池或进程池
  • 在使用缓存时,一定要检查缓存的过期条件
  • 尽量监控资源指标,尽量在上线前发现问题


当然我并没有要抨击之前写代码的人,写这篇文章只是为了总结下内存泄漏

相关文章

分享一个文件整理使用Python小脚本(删除相同文件减小内存占用)

写在前面:脚本作用:在目标文件夹中筛选出大小相同的文件,并打印在屏幕上,这样可以快速找出相同文件,释放硬盘内存。前期部署:安装python并做好配置环境变量(基础)先上代码:import osfrom...

python如何进行内存管理

关于首先python进行内存管理就不得不提到Python解释器在何种情况下会释放变量的内存。Python引用了内存计数这一简单的计数来控制。当一个变量的引用计数为0的时候,就会被解释器回收。当然在交互...

一文读懂 Python 的内存管理

Python 是一种高级编程语言,以其简单性和可读性而闻名。它的主要功能之一是自动内存管理,这对开发人员来说至关重要,因为它抽象了手动内存分配和释放的复杂性。本文旨在深入了解 Python 的内存管...

一文掌握Python内存管理

Python中的内存是由Python内存管理器(Python memory manager)来管理的,它涉及到一个包含所有Python对象和数据结构的私有堆(heap)。Python内存管理器有不同的...

Python 的内存管理与垃圾回收

本文首发自「慕课网」,想了解更多IT干货内容,程序员圈内热闻,欢迎关注!作者| 慕课网精英讲师 朱广蔚1. 内存管理概述1.1 手动内存管理在计算机发展的早期,编程语言提供了手动内存管理的机制,例如...

喂!你这个python的内存是不是爆了?喏,拿这个去测试一下看看

你是否曾经为python程序的内存占用问题头疼不已?是否觉得内存泄漏、对象占用过多内存等问题难以排查?别急,今天我要介绍一个神器——pympler,让你轻松搞定python内存分析!01什么是pymp...